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Abstract.-Surplus-produc
tion models, because of their sim
plicity and relatively undemanding
data needs, are attractive tools for
many stock assessments. This pa
per reviews the logistic production
model, starting with the basic dif
ferential equation and continuing
with a description ofthe model de
velopment without the equilibrium
assumption. It then describes sev
eral extensions, including "tuning"
the model to a biomass index; par
titioning fishing mortality by gear,
time, or area; and making projec
tions. Computation of confidence
intervals on quantities of interest
(e.g. maximum sustainable yield
(MSY), effort at MSY, level ofstock
biomass relative to the optimum
level) can be done through boot
strapping, and the bootstrap can
also be used to construct nonpara
metric tests of hypotheses about
changes in catchability. To fit the
model, an algorithm that uses a
forward solution of the population
equations can be implemented on
a small computer. An example of
the utility of surplus-production
models (illustrating several of
these extensions) is given. The ex
ample is loosely based on swordfish
<Xiphias gladius) in the North At
lantic Ocean, but is not intended
to describe the actual status ofthat
stock.

Despite the prevalence ofage-struc
tured population models, surplus
production models-which gener
ally do not incorporate age struc
ture-remain useful for analysis of
fish population dynamics. These
models are of particular value when
the catch cannot be aged, or cannot
be aged precisely, and therefore age
structured models cannot be ap
plied. Surplus-production models
are also useful as a complement to
age-structured models, providing
another view of the data and the
fisheries. An especially appealing
aspect ofproduction models is their
simplicity; from a scientific point of
view, this makes exploration oftheir
properties easier; from a manage
ment point of view, it makes their
results easier to present and under
stand (Barber, 1988).

In this paper, I show that another
benefit of these models' simplicity
is that model extensions are easily
made. Examples ofsuch extensions
include modeling several simulta
neous or sequential fisheries on the
same stock, "tuning" the model to a
biomass index (as is often done in
age-structured models; e.g. the
CAGEAN model of Deriso et aI.,

1985; the CAL model of Parrack,
1986; the ADAPT model ofGavaris,
1988), modeling changes in catch
ability or population characteristics
(e.g. carrying capacity), and esti
mating missing values of fishing ef
fort. Many of these extensions have
not been presented before.

The comprehensiveness of a pro
duction model can be further in
creased by introducing another ex
tension: computation of nonpara
metric estimates of variability in
the results. These can be obtained
by bootstrapping, and can be used
both to describe the results more
completely and to learn more about
the model's behavior under a vari
ety of circumstances.

After reviewing the formulation
of the simplest surplus-production
model (the logistic model), a num
ber of extensions to the model are
described. An example, loosely based
on swordfish, Xiphias gladius, in
the North Atlantic Ocean, is pre
sented to illustrate typical results
from the model and the use ofmany
ofthe extensions. The example, which
is not intended to be an assessment
of that stock, should not be used to
make inferences about stock status.
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Model formulation and fitting

This model, like many fisheries models, is much sim
pler than the real world. In particular, it excludes
such factors as environmental variation, interspe
cific effects, or the possible presence of more than
one stable regime.

where Bt is the population biomass at time t and r
and K are parameters. The right side of Equation 1
is simply the start of the Taylor expansion of an ar
bitrary function <I>(B) passing through the origin
(Lotka, 1924).

Equation 1 is written in the parameterization of
population ecology, in which K represents the maxi
mum population size, or carrying capacity, and r rep
resents the stock's intrinsic rate of increase (in pro
portion per unit time). In this paper, both are as
sumed constant. Other parameterizations could be
used, and indeed a slightly different parameteriza
tion is used for simplicity in the next section.

Adding fishing mortality F t to the model, it be
comes

(3)

(5)

(4b)when ah =0.

Equation 4a is the familiar logistic equation. How
ever, ifah = 0 (i.e. ifFh = r), Equation 4a is undefined
and Equation 4b is used in its place.

Modeling the yield during the same period involves
another integration with respect to time:

ih+B
Yh = FhBtdt,

t=h

Equation 3 can be conveniently solved for biomass
under the assumption that Ft is constant and that
therefore CLe is constant. This is a weak assumption,
for ifF t varies, time can be divided into short peri
ods of constant or nearly constant F and a solution
found for each period. Fitting would then require
knowing the catch and effort for each short period.

For the period beginning at t = h and ending at
time t =h + ~, during which the instantaneous fish
ing mortality rate is Fh , the solution to Equation 3 is

a B eah6
Bh+B = h h a B when ah '# 0, or (4a)

ah + fJBh (e h - 1)

B _ Bh
h+B - 1+ f36B

h

whereBt, the biomass atinstantt, is defined by Equa
tions 4a and 4b; Fh is the (constant) instantaneous
rate offishing mortality during the time period; and
Yh is the yield taken during the period. Performing
the integration in Equation 5,

Yh = Fh In[l- f3Bh (1- e
ahB

)] when ah 'f:. 0, or (6a)
J3 ah

y, Fh
h =pln(l+ OfJBh) when ah =O. (6b)

Equation 6a was apparently first given by Pella
(1967) (and a similar form developed by Schnute
[1977]); Equations 4b and 6b seem not to have been
presented in fishery biology before now.

It follows from the definition of F that the esti
mated average biomass during the period is simply
Yh / Fh • The surplus production Ph during the time
period can be determined by mass balance:

Before integration, simplify notation by defining
at=r-Ft and p=r /K to express Equation 2 more sim
ply as

(2)

(1)

dBt r 2
-d =(r-~)Bt--Bt ·

t K

Basic differential equations

Surplus-production models characterize a population
as an undifferentiated biomass. The number ofindi
viduals present or harvested plays no part in these
models, nor is age or size structure considered. A
quantity termed "surplus production" is used to char
acterize population dynamics at different levels of
population size (measured in biomass). Surplus pro
duction is the algebraic sum of three major forces:
recruitment, growth, and natural mortality. The ad
jective "surplus" refers to the surplus ofrecruitment
and growth over natural mortality; i.e. the net pro
duction. In this article, surplus production will often
be termed simply "production," and the models
termed "production models."

In the simplest production model, the logistic or
Graham-Schaefer (Graham, 1935; Schaefer, 1954,
1957) model, a first-order differential equation de
scribes the rate of change of stock biomass Bt due to
production. In the absence offishing, the population's
rate of increase or decrease is assumed to be a func
tion of the current population size only:

dBt =rB _.!....B2
dt t K t,

Time trajectories of biomass and yield

Integration of Equation 2 with respect to time al
lows modeling the biomass and yield through time.

(7)

When yield is equal to surplus production, the popu
lation is in equilibrium.
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Parameter estimation

Parameter estimation for this model can be accom
plished by a numBer of methods. The method pre
sented here is a slight modification ofone originated
by Pella (1967), later used by Pella and Tomlinson
(1969), and recently termed the "time-series method"
by Hilborn and Walters (1992). Although it is not
necessary to use equal time periods, the treatment
in the balance of this paper assumes, for simplicity,
that there are T equal time periods, indexed by 't =
{I, 2, ..., Tl, and that a period is one year in duration.
The following symbols are used:

B'[ population biomass at the start of year 't

Y'[ yield in biomass during year 't

P surplus production during year 't,

{, '[ fishing effort rate during year 't,

F fishing mortality rate during year 't,
'[

a.'[ function ofF'[; a.'[ =r - F'[.

Estimates ofthe first five ofthese quantities are rep
resented by BpYr,Pr,{p and Fr'

An important additional assumption is that, for
all 't, F'[ =qf'[; in other words, that fishing mortality
rate is proportional to fishing effort rate and that
the catchability coefficient q is constant. (The as
sumption of constant q is slightly relaxed later.)

The data required for fitting are, for each time
period 't, data on effort f'[ and the yield Y'[, where
't =(l, 2, ..., Tl and T> 4. The parameters to be esti
mated are rand K in Equation 1, q, and BI' the bio
mass at the beginning of the first year. The simplest
procedure accumulates residuals in yield. To perform
the estimation, the following algorithm is used:

Al Obtain starting guesses for the four parameters.
A2 Beginning with the current estimate ofBI' project

the population through time according to Equations
4a and 4b. For each year of the projection, com
pute estimated yield from Equations 6a and 6b.

A3 Compute the objective function to be minimized.
Assuming a multiplicative error structure in
yield, this is

T A 2
I,[log(Yr)-log(Yr )] •
•=1

A4 Monitor the objective function for convergence.
If achieved, end. Otherwise, revise the param
eter estimates (using a standard minimization
scheme) and continue at stepA2.

The simplex or "polytope" algorithm <NeIder and
Mead, 1965; Press et aI., 1986) works well as the
minimization scheme in this application. Although
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not as rapid computationally as some other meth
ods, the simplex algorithm is quite robust to start
ing values and is easily manipulated (by restarts) to
avoid local minima (see Press et aI., 1986, p. 292).
Rivard and Bledsoe (1978) used the Marquardt (1963)
algorithm successfullyfor estimation in a similar model.

The estimation method just described uses the re
corded effort in each year to estimate yield. Alterna
tively, one could use the recorded yield in each year
to estimate the fishing mortality rate (or equivalently,
the fishing effort rate). The solutions of Equations
6a and 6b for fishing mortality rate are

F ~ [{JY, ]when a, ~O, or
r f3B (ear-l)

In t + 1
ar

F. - {NT when ar =O. (8b)
r - In[l+ PBr]

To use this approach, one must revise the second and
third steps of the algorithm to become-

A2' Beginning with the current estimate ofB l' com
pute the estimated fishing effort for each year
by solving Equation 8a or 8b and dividing by
q. Project the population to year-end with Equa
tion 4.

A3' Compute the objective function to be minimized.
Assuming a multiplicative error structure in
effort, this is

T A 2
I,[log(fr)-log(fr)] .
r=l

This is equivalent to minimizing the sums of
squared residuals in the logarithm of catch per
unit ofeffort, i.e. to minimizing

T 2

I,[log(Cr1fr)-log(Crl{r)] .
T=l

A significant practical advantage of the second
approach is that it simplifies the analysis ofdata with
some missing data on effort. During parameter esti
mation, effort is estimated for all years; for years of
missing effort, the contribution to the objective func
tion is simply defined to be zero. In contrast, the
computations for the first approach are not possible
without data on effort for each year.

Estimating effort from yield introduces two small
practical difficulties. The first difficulty is that Equa
tion 8a is not an explicit solution for effort (because
a. includes ~), so it must be solved iteratively. This'[ 1'[ _

is accomplished by putting a starting guess F'[ into
the right-hand side ofthe equation, solving, and sub
stituting the result repeatedly until ~onverge}lceis
achieved. A logical starting guess is Fr = YT I Br•
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The second difficulty involves a fundamental dif
ference between predicting yield and predicting ef
fort. For a given starting biomass and effort, one can
always compute the corresponding yield. For a given
starting biomass, however, there are some yields that
can never be obtained, no matter how high the ef
fort. Under these circumstances, the catch equation
(6a or 6b) has no solution. Unless a tactic is devised
for such cases, it becomes impossible to compute the
objective function when they occur, and thus impos
sible to conduct its minimization. A tactic suggested
by R. Methot1 as useful in his stock-synthesis model
(Methot, 1989, 1990) is to place a constraint on the
maximum allowable value of F

l
(and consequently

off
l
). When an estimate ofF

l
reaches this constraint,

it is not allowed to increase further, and the quantity
[log(YT ) - log (}7T )]2 is added to the objective function
along with the usual squared residual in effort. This
allows computation of a reasonable value of the objec
tive function for such regions ofthe solution space that
may be encountered during optimization. In my expe
rience, however, final estimates have always come from
a solution in which yield is always matched exactly.

In fitting a linear regression, observation error in
the predictor variables causes problems with the pa
rameter estimates, including inconsistency and, in
the bivariate linear case, bias towards zero (Thiel,
1971; Kennedy,1979). The problems induced into
nonlinear models are less well understood, but are
believed to be similar. Schnute (1989) has illustrated
how the choice of dependent variable in a fisheries
model can affect the results substantially. In fisher
ies contexts, yield is usually observed more precisely
than fishing effort; for that reason, it seems prefer
able on statistical grounds to use the second ap
proach, estimating effort from yield, rather than es
timating yield from effort.

Whichever approach is chosen, the estimation pro
cess results in direct estimates of B1' r, K, and q,
which define unique estimates of the stock biomass
levels B 2, B3, ••• , B T and the stock's production dur
ing each period of time. The corresponding estimate
of maximum sustainable yield (MSY) under the 10-

"" Agistic model is MSY =K,. 14. According to the theory
of production modeling, MSY can be attained as a
sustainable yield only at one specific stock size; for
tlt-e logis~ic model this is B MSY =K/2, estimated by
~SY =K 12. The instantaneous fishing mortality
that generates MSY at B Msy is FMSY =r/2; the cor
responding rate of fishing effort is fMSY = r/2q, with
estimates given by substituting ;. and q for the un
known true values in these two expressions.

1 Methot. R. Alaska Fisheries Science Center. 7600 Sand Point
Way NE. Seattle, WA 98115. Personal commun., 1993.
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The logarithmic objective function assumes mul
tiplicative errors with constant variance. The solu
tion obtained is the maximum-likelihood solution if
the transformed residuals are independent, of con
stant variance, and normally distributed (see Seber
and Wild, 1989). However, maximum-likelihood
methods, while generally desirable, are not neces
sarily robust to outliers, nor do they necessarily have
desirable small-sample properties. Use of a robust
regression method (such as least absolute values re
gression) would be an interesting research topic.

Another management benchmark

An analogue of the management benchmark F0.1 can
be computed for this model (or for any production
model). The derivative of equilibrium yield with re
spect to fishing mortality rate for this model is

c::;; =K(1- 2:} (9)
At F = 0, this derivative is equal to K. We define as
FO.1 for this model as the value of F at which Equa
tion 9 equals 0.1 K. Substitution into Equation 9 gives
the following results: FO•1 = 0.45 r, and YO.1 = 0.2475 rK
(where YO.1 is the equilibrium yield corresponding to
FO.1)' An equivalent statement is that FO•1 is 90% of
FMSY' and YO.1 is 99% of MSY. Punt (1990) used the
concept of FO•1 for a production model but did not
explicitly state these relationships.

Penalty for large estimates of 8 1

Logistic production theory implies that B 1 should
always be less than K, but the objective functions
used here are relatively insensitive to the estimate
of B1' In practice, I have found that the estimate of
B 1 obtained from some data sets tends to be much
larger than the estimate ofK. Such results could be
eliminated by introducing a fixed constraint into the
solution, but I have used another method success
fully: adding a penalty term to the objective function
when 8

1
> i. Including this term, the complete loga

rithmic objective function (assuming residuals in ef
fort) becomes

T

L= IJIog(fT)-IOg(fT)r +cfl[log(B1)-IOg(1br, (10)
T=l

where 4' == 1 if81 > i, and 4' == 0, otherwise. While
constraining the value of B 1 seems logical in accor
dance with the underlying population theory, such
constraints can change the estimates ofother param
eters, compared to an unconstrained solution. The
amount ofchange can be examined by estimating with
and without the penalty term or fixed constraint.
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Extensions to the model

A great strength of the model presented here is the
ease with which it can be extended and modified.
Such extensions can include, for example, modeling
fisheries divided by space, time, or gear type; ana
lyzing data series including some years of no effort,
as would occur during a closure; analyzing data se
ries with years of missing or highly uncertain effort
data; incorporating changes in catchability within
the data series, perhaps after periods of closure or
following regulatory changes; and tuning the model
to fishery-independent estimates or indices of popu
lation biomass.

Missing data

Gaps in the effort and yield time series do not present
a problem to these dynamic production model analy
ses. Years with no effort (and therefore no catch) can
easily be treated by defining the residual to be zero.
Although such years do not influence parameter es
timation directly, the time lag during the years of
closure carries information that is incorporated in
fitting the model, and an estimate ofpopulation bio
mass for each missing year is made according to the
logistic growth model. In contrast, years of closure
contribute no information to production models that
assume equilibrium conditions.

A slightly more difficult problem is the correct
treatment of years in which effort is known to have
existed, but for which the data are missing or highly
uncertain. In such a case, the framework presented
here can be used to estimate, simultaneously with
the other parameters, effort levels for a limited num
ber ofsuch years within the series. As in any estima
tion scheme, the total number of estimated param
eters should be kept reasonably small in comparison
to the number of years of nonzero data. If residuals
are constructed in effort (rather than yield) the esti
mation of missing effort becomes trivial, as a pre
dicted effort is computed for each year during pa
rameter estimation.

More than one data series

Another simple extension of the basic estimation
framework is analysis ofstocks fished by two or more
different gear types, either in the same years or se
rially. For convenience, I refer to these as different
fisheries on the same stock. To define the situation
more precisely, there are J different fisheries, indexed
by j = 11, 2, ... , JI. The effort applied by fishery j in
period t is 0r' the catchability coefficient ofthat fish
ery is qj' and the yield in period t is ¥Jr' All qj are
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assumed time-invariant. The total instantaneous
fishing mortality in period t is

J

FT = LqjfjT' (11)
j=l

Biomass and yield projections can be computed by
Equations 4a, 4b, 6a, and 6b as before. The estimated
yield from fishery j in period t is

y. = ii/jT Y.
JT F. T'

T

where Y
T

is the total yield in period t. During pa
rameter estimation, a residual is obtained for each
fishery having nonzero effort in period t. The contri
bution to the objective function for each period is thus
composed ofa sum ofterms, one for each fishery with
nonzero effort. In addition, the individual fisheries
may carry different statistical weights to reflect vary
ing levels of confidence in the data from each fish
ery. Inverse-variance weighting can be approximated
by iteratively examining the mean-squared error
(MSE) from each series, weighting, and re-estimat
ing the parameters.

Model tuning

Ifan external series ofpopulation biomass estimates
is available, it can be incorporated into the analysis
in a procedure analogous to tuning an age-structured
analysis. The external estimates are compared to the
population estimates derived within the production
model and the residuals incorporated in computa
tion of the objective function. Rivard and Bledsoe
(1978) suggested this possibility, but did not pursue
the idea, and it has also been described by Hilborn
and Walters (1992). The external biomass series need
not be continuous, but may contain missing values;
the series' contribution to the objective function is
set to zero for years with missing values. An exter
nal index of biomass can be used similarly, with the
cost of estimating one more parameter (the
catchability associated with the index).

The model formulation involved in tuning the
model is similar to that used when fitting more than
one fishery. As in that situation, each year's contri
bution to the objective function consists of a sum of
terms. Here, the sum includes a term from each fish
ery and a term for each biomass-estimate or index
series. For a maximum-likelihood solution, the com
ponents should carry statistical weights inversely
proportional to their variances.

Varying catchability

In many situations, catchability is thought to change
relatively suddenly, perhaps because more efficient
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where 8 is the conventional estimator of 8, and 8m

is the median value of 8 obtained from the bootstrap
trials (Efron,1982; Efron and Gong, 1983). A bias
corrected estimator 8BC of a parameter 8 can there
fore be given by

It appears that the median bias correction, rather
than a mean correction, has been adopted in the
bootstrapping literature because a mean correction
(which would be expected to produce an "unbiased"
estimate in the usual sense) can have extremely high
variance (Hinkley, 1978). The resulting problems are

tion, so that only one additional parameter would be
estimated. One could also add some form ofdensity
dependent catchability model with a minimal cost
in terms of number of parameters estimated; the
foundation ofsuch an approach was presented by Fox
(1975). However, it might prove difficult to distin
guish varying catchability from trends in biomass
itself. If so, the use of external estimates or indices
of biomass, as explained above, might be especially
valuable.

(13b)

(13a)

Bootstrap estimates of bias and variability

The bootstrap (Efron, 1982; Stine, 1990) is asample
reuse technique often used to estimate sampling vari
ances, confidence intervals, bias, and similar prop
erties of statistics, including parameter estimates.
Major advantages of the bootstrap, compared to al
ternative methods (such as those based on the infor
mation matrix), are its flexibility and relative free
dom from distributional assumptions. Aminor draw
back is that it demands a great deal ofcomputer time.

Bootstrapping is often performed by resampling
the original observations. However, in fitting non
equilibrium production models, the order ofthe catch
effort pairs is as significant as the data themselves.
For time-series models (in the broad sense), Efron
and Tibshirani (1986) describe a method, used here,
that preserves the original time structure ofthe data.
For each bootstrap trial (of which there may be 250
to several thousand), a set of synthetic observations
is constructed by combining the ordered predictions
from the original fit with residuals chosen at ran
dom (with replacement) from the set ofresiduals from
the original fit. The model is then refit to this set of
synthetic observations.

The bootstrap can be used to estimate bias in pa
rameter estimates. The median estimation bias B~

in a parameter 8 is estimated by

gear for finding or catching the fish is introduced. In
such cases, the formulation represented by Equations
11 and 12 can be used to estimate different
catchability coefficients for segments ofa single time
series. In formulating such a model, the time seg
ments would be treated as separate fisheries, each
having nonzero catch and effort data only during its
respective time period. Each additional time segment
would add one additional parameter to the model.

A common concern is determining whether the
improvement in fit obtained from a more complex
model is statistically significant. A production model
with added catchability parameters can be tested
against the simpler model (with one estimated q) with
a standard F-ratio test. (Here F refers to the F dis
tribution of statistics, not to fishing mortality rate.)
The test statistic F* is

F* =(SSEs -SSEc)/vI, (13)
SSEc /v2

where SSEs and SSEcare the error sums of squares
of the simple and complex models, respectively; vI is
the difference in number of estimated parameters
between the two models; and v2 is the number ofdata
points less the total number ofestimated parameters.
The significance probability of F * can be obtained
from tables of the F-distribution with vI and v 2 de
grees of freedom. As pointed out by a referee, this is
equivalent to to a likelihood-ratio test assuming log
normal error structure, which is implicit in using the
SSE from log-transformed data. Because of the pos
sibility of specification error, any such significance
test must be considered approximate.

A nonparametric test of the null hypothesis q I =
q2 can also be conducted by examining a bias-cor
rected confidence interval on the ratio of the two
catchability coefficients. (Construction of bias-cor
rected confidence intervals is described later.) As an
example, assume that the alternative hypothesis is
ql ~ q2' The null hypothesis would be rejected at
P<0.05 if a 95% confidence interval on the ratio ql /
q2 did not include the value 1.0. Like the F-test, this
test is approximate because ofthe possibility ofspeci
fication error.

In other cases, catchability is thought to vary in
more subtle ways than the step function just sug
gested (Paloheimo and Dickie, 1964; Gulland, 1975;
MacCall; 1976; Peterman and Steer, 1981; Winters
and Wheeler, 1985), and one could incorporate any
number of catchability models into the estimation
framework. It would be straightforward to model a
linear trend (increase or decrease) in catchability
with time. This could be parameterized by estimat
ing the first and last years' values ofq and generat
ing intermediate years' values by linear interpola-
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where iJ is the conventional estimator. Then, the
(1 - 2a) Be central confidence interval on iJ is de
fined as

Projections

Because a production model implicitly includes a
recruitment function, it can be used to make projec
tions based on hypothetical catch or effort quotas.
As noted above, the historical population biomass
trajectory is estimated during parameter estimation.
The modeled population can then be projected for
ward in time by using the same population equations
(4,6,8), and a proposed set of yields or effort rates.
If the bootstrap is used following parameter estima-

This method assumes that a transformation exists
under which the distribution of (J becomes normal
and homoscedastic. However, the form of the trans
formation need not be known (Efron and Gong, 1983).
Kizner (1991) constructed bootstrap confidence in
tervals on production-model results, but he did not
state whether bias corrections were used.

This discussion of bootstrapping has referred to
estimated "parameters" for simplicity, but the method
can be used to estimate bias corrections and bias
corrected confidence intervals for any estimated
quantity. Such quantities might include estimates
of MSY, fMSY' the population biomass in the final (or
any other) year, fo.l ' projections of biomass levels
(discussed next), and so forth.

Example: North Atlantic swordfish

Many aspects of the production model discussed
above are illustrated in this example, which is loosely
based on swordfish, Xiphias gladius, in the North
Atlantic Ocean. The example comprises two analy
ses, the difference between them being the use ofan
abundance index for tuning the second analysis. Both
the base analysis and the tuned analysis used the
same yield and fishing-effort data (Table 1; Fig. 1);
the tuned analysis also used a hypothetical index of
abundance constructed for this purpose (Table 1; Fig.
1). In both analyses, errors were assumed to occur in
fishing effort and to follow a lognormal distribution;
in other words, the "second estimation approach"
described previously was used. Each analysis in
cluded a projection of five years beyond the actual
data; during those five years, it was assumed that a
yield of 12,000 metric tons would be taken annually.
Each analysis included a bootstrap with 1,000 trials.

This example is not intended as, and should not
be considered to be, a formal assessment ofthe sword
fish fishery. Such an assessment would normally in
clude additional information and analysis, including
age-structured population models and numerous sen
sitivity analyses. Also, the abundance index used
here was developed solely to serve an example, and
is not believed to be an accurate reflection of abun
dance over time.

The North Atlantic swordfish fishery enjoyed a
high catch rate in 1962 and 1963, but it declined in
the late 1960s (Fig. 1). The U.S. and Canadian por
tions ofthe fishery were sharply reduced in the early
1970s because of FDA regulations prohibiting inter
state transportation or importation offish with mer
cury concentrations exceeding the allowable level of
0.5 ppm (Hoey et aI., 1989). In 1978, the FDA in
creased the allowable mercury content to 1 ppm, and
since then, the catch has increased, but the CPUE
has slowly declined (Fig. IB). For the years 1971
73, early years ofthe FDA regulations, data are avail
able on catch but not on fishing effort.

Results from" the two analyses were similar, but
they illustrate how tuning can influence the results
of a production model. In each analysis, the model
fits the effort data reasonably well (Fig. 2); however,
because the hypothetical abundance index does not
match the observed CPUE well (Fig. IB), the fit in
the last years of the tuned model was a compromise

tion, the results of each bootstrap trial can be pro
jected forward. From the results, it is possible to com
pute bias--corrected point estimates and confidence
intervals on the projection results.

(14)

avoided by use ofa median correction, which is quite
resistent to outliers. However, the use of a median
correction implies that the estimated bias correction
will be nonzero for an estimator that is unbiased (in
the usual sense) but arises from a distribution in
which the median does not equal the mean. That is,
the use of a median bias correction transforms the
estimator into a median estimator.

Several methods have been developed for comput
ing bias-corrected confidence intervals from the boot
strap (Efron, 1982; Efron, 1987; Noreen, 1989). The
most widely used at present appears to be the BC
method of Efron (1982). To compute a BC interval,
letN(z) be the cumulative distribution function (CDF)
of the standard normal distribution and letN-l be the
inverse-normal CDF. Let Cbe the empirical bootstrap
CDF of the parameter (J; i.e. C(g) is the proportion of
realizations of iJ in the bootstrap distribution that falls
below any arbitrary value g. Define the constant
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Table 1
Data used in two production model analyses loosely
based on swordfish, Xiphias gladius, in the North
Atlantic Ocean. Yield and standardized fishing-ef
fort-rate data are from Hoey et al. (1993) with mi
nor revisions. Hypothetical abundance index data
are the mean of ages 3 through 5+ in numbers from
Scott et al. (1992). The index was constructed solely
for illustrative purposes, and is designated "hypo
thetical" because it probably is not a good indicator
of total-stock biomass.

between matching the observed effort (Fig. 2B) and
matching the index (Fig. 2C). The tuned analysis
gave lower estimates of MSY, {MSY' and a less opti
mistic impression ofthe current level ofthe stock, as
represented by the ratio B199.jBMSY (Table 2). It also
estimated that the recent fishing mortality rate, as
represented by the ratio F1991FMSY' was somewhat
higher.

Estimated median biases from each analysis were
small. In the base analysis, no management bench
mark was estimated to have a bias exceeding 1.5%

19.22
22.97
21.17
18.14
20.40
40.13
35.44
34.85 1.000
40.73 0.816
55.10 0.488
49.44 0.483
59.55 0.526
80.75 0.411
98.91 0.377
97.08 0.368
90.46 0.359
85.86 0.352
69.86

Year Yield (tl

1962 5,342
1963 10,189
1964 11,258
1965 8,652
1966 9,338
1967 9,084
1968 9,137
1969 9,138
1970 9,425
1971 5,198
1972 4,727
1973 6,001
1974 6,301
1975 8,776
1076 6,587
1977 6,352
1978 11,797
1979 11,859
1980 13,527
1981 11,126
1982 12,832
1983 14,423
1984 12,516
1985 14,255
1986 18,278
1987 19,959
1988 19,137
1989 17,008
1990 15,594
1991 13,212

Fishing
effort rate

(l06 hookslyr)

6.45
8.54

24.45
25.30
31.39
28.90
40.11
43.23
38.47

Hypothetical
abundance

index

of the corresponding uncorrected estimate (Table 2).
Estimated median biases for the tuned analysis were
only slightly higher; with only the estimated bias in
{MSY slightly exceeding 2%. Estimates ofmedian bias
in individual model parameters (such as rand K)
were slightly higher yet, but only for B 1 was bias
estimated as higher than about 2.5%.

Approximate 80% nonparametric confidence inter
vals computed by Equations 14 and 15 were derived
from the bootstrap. These were computed for the in
dividual model parameters, management bench
marks, indicators of stock position, and for each
year's relative stock size estimate (Table 2; Fig. 3). A
unitless nonparametric measure of the precision of
estimates was constructed by dividing the bias-cor-"
rected 50% confidence interval (interquartile range;
not shown here) by the corresponding median bias
corrected estimate. The resulting statistic, the rela
tive interquartile range (RIR) is a nonparametric
analog ofthe coefficient ofvariation. The RIR was of
similar magnitude for both models, and was small
est in MSY and {MSY' the benchmarks that do not
depend on q. Estimates ofthe quantities that depend
on q, and that thus involve absolute scaling, exhib
ited relative IQ ranges of about 50% (Table 2).

Estimates of relative biomass (B'[ scaled to BMSY)

and fishing mortality rate (F'[ scaled to F MSY) were
also similar from the two models (Fig. 3). They show
a declining biomass through 1991, with an increase
expected thereafter (at the projected harvest rate of
12,000 tfyr, which is less than the MSY estimates).
As expected, the precision of estimates during the
projection period was less than during the period for
which data were available.

In summary, this example demonstrates that much
more than MSY can be estimated from a production
model. Biomass trajectories can be computed easily,
as can estimated confidence intervals derived
through the bootstrap. If an independent index of
abundance is available, the model can be tuned to
that index. Another useful feature is that projections
can be used to estimate the probable effects of quo
tas or other management measures.

Discussion

The modeling framework described here is based on
the logistic population model. The history of this
model was summarized by Kingsland (1982), who
pointed out that the model originated in the work of
Verhulst (1845) and Robertson (1923), was popular
ized by Pearl and Reed (1920), and was also studied
by Lotka (1924). The model was introduced to fish
ery science by Graham (1935) and Schaefer (1954,
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Other extensions

Many other extensions to the production model have
been published. An incomplete list includes these:
Fox (1975, 1977) presented a logistic production
model with mixing of two stocks; Deriso (1980) and
Hilborn (1990) demonstrated different methods of
fitting production models to age-structured popula
tions (but see also Ludwig and Walters, 1985); Freon
(1986) introduced environmental variables into a
production model that used the equilibrium assump
tion; Laloe (1989) and Die et a1. (1990) incorporated
fished area into production models; Polovina (1989)
demonstrated a system ofproduction models in which
some parameters are common among models; and
Hoenig and Warren (1990) demonstrated Bayesian
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Figure 1
Data used to fit production model examples loosely based on
swordfish, Xiphias gladius , in the North Atlantic Ocean. (A) Stan
dardized effort rate (.) and total yield (0). (B) CPUE trajectory
(.) computed from data in (A), and index of abundance (0) used to
tune the second example. The index, which was used for illustrative
purposes only, is not a good measure of total-stock abundance.

1957). In modeling fish populations, one
couldjust as easily use the exponential yield
model ofFox (1970) or a model ofmore flex
ible shape, such as that of Pella and
Tomlinson (1969) or its alternative formu
lation by Fletcher (1982). (Fletcher's formu
lation lacks the estimated exponent that has
been found to complicate estimation [Ricker
1975, p. 326].) Unfortunately, those formu
lations can not supply an analytical formu
lation similar to Equations 6 and 8, which
means that numerical integration would
have to be used, as in the GENPROD com-
puter program of Pella and Tomlinson
(1969). Another alternative would be to use
a discrete-time model, rather than the con
tinuous-time model presented here. Such
models are simpler mathematically, but
usually entail assumptions that the growth,
recruitment, and catching seasons are brief.
The logistic model was used here because
it is a simple case, not because using other
models would be impractical or inferior.

For what types of stocks are the models
presented here appropriate? Research is
lacking to answer this question definitively,
but general comments are possible. One
group of fishes for which production mod-
els seem to work well is the tropical tunas.
These species are characterized by rela-
tively fast growth, relatively constant re
cruitment, and reduced annual seasonality
in the life processes. Density dependence in
growth has been demonstrated in a related
species, Scomber japonicus. (Prager and
MacCall, 1988); such plasticity in growth
would allow the compensation inherent in
a production model to be expressed in a way
beyond recruitment variability. For modeling fish
stocks with more seasonality in growth, reproduc
tion, and harvest, a discrete-time production model
might prove superior to the continuous-time model
presented here.

In many fish stocks, recruitment is extremely vari
able. Ordinary production models may not work well
when applied to stocks with large recruitment fluc
tuations that are unrelated to population size, espe-

. cially when the catch--effort series is short. Ifrecruit
ment fluctuations can be linked to exterrtal factors
(such as variation in rainfall or sea-surface tempera
ture), a production model incorporating these factors
might work well (Freon, 1986). It would be simple to
modify the logistic model to incorporate an environ
mental factor, perhaps as an influence on r on an
annual basis.
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Autocorrelation

Because catch and effort data are usually autocor
related, the residuals from fitting-whether comput
ed in yield or effort-may also be autocorrelated. A
matter of statistical concern is whether a method of
fitting that takes the autocorrelation into account
(such as one based on time-series analysis sensu Box
and Jenkins [1976]) might be more appropriate. Some
results. relevant to this question were obtained by
Ludwig et al. (1988) in a study that used two differ
ent objective functions to fit production models to
simulated data. The first was a total-least-squares
objective function, which did not take autocorrelation
into account; the second, an approximate-likelihood
objective function, which did. Ludwig et al. (1988)
found that the two methods produced very similar es
timates; the authors concluded that the added complex
ity ofthe approximate-likelihood method was probably
not warranted. In addition, the approximate-likelihood
method frequently failed to converge from poor start
ing values. This does not mean that autocorrelation
should be ignored in all fisheries modeling; however, it
was not a major concern in the study cited.

Process error

The model presented here assumes that the produc
tion ofbiomass is a deterministic function ofthe cur
rent biomass; stochasticity occurs only in the obser
vation of catch or effort or in the relation of fishing
effort to fishing mortality rate (ifeffort is being esti
mated from catch). In reality, production is undoubt
edly stochastic to some degree. In recognition ofthis,
fisheries models that explicitly incorporate process
error have been developed (e.g. Ludwig et al., 1988;
Sullivan, 1992). Because process errors are propa
gated forward in time, it would seem that time
series fisheries models (e.g. production models),
should include corrections for process errors, so that
the system can be modeled as correctly as possible.

Despite the undeniable logic of including process
error in fisheries models, there are also negative as
pects, and the practical merit of including process
error in fisheries applications remains a topic for
research. The theory ofmodels including process er
ror was largely developed in process control (Kalman,
1960), a field in which large data sets are common.
Including both observation error and process error
in a model generally entails either estimating a large
number ofnuisance parameters (the process errors),
making strong assumptions about the form or value
of the process error component, or both. In some
cases, the need to estimate additional parameters
can make it difficult or impossible to estimate pa
rameters ofinterest, such as MSY, without additional
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Figure 2
Goodness-of-fit of two production model analyses
loosely based on swordfish, Xiphias gladius, in the
North Atlantic Ocean. These analyses are illustra
tive and are not intended as an assessment ofsword
fish. Model 2 differs from Modell in being tuned to
a hypothetical index ofabundance. (A) Observed (0)
and estimated (--) fishing effort rate from Model
1. (B) Observed (0) and estimated (--) effort rate
from Model 2. (C) Observed (0) and estimated abun
dance-index from Model 2.
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and empirical Bayes methods for fitting production
models. Most of the extensions described by these
investigators could be combined with techniques pre
sented here (e.g. tuning, bootstrapping), as required
for a particular analysis.
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Table 2
Results of two bootstrapped production model analyses loosely based on swordfish, Xiphias gladius, in the North
Atlantic Ocean. The base model used only yield and standardized efTort data. The tuned model also used a hypo
thetical index of abundance (Table 1). Each conventional parameter estimate is designated B, the corresponding
bias-corrected estimate is designated Bsc' Nonparametric bias-corrected 80% confidence intervals are derived from
the bootstrap; as with most fishery analyses, these are conditional on correct model structure and probably under
estimate true uncertainty (see text). The relative interquartile (IQ) range, a unitless measure of precision, is the
50% confidence interval divided by the median bias-corrected estimate. All results are rounded to three significant
digits.

Base model Tuned model

Quantity 80% 80% Relative 80% 80% Relative
estimated fJ fJBC lowerCL upperCL IQ range fJ fJBC lower CL upper CL IQ range

Management benchmarks
MSY 13,800 13,700 11,800 15,100 11.8% 13,400 13,400 11,700 14,900 11.7%
FMSY 0.257 0.259 0.161 0.393 45.3% 0.264 0.269 0.169 0.432 50.9%
{MSY 72.6 71.1 6.1.7 82.2 14.5% 68.7 68.3 0.590 0.781 14.1%
BMSY 53,800 53,100 37,400 79,700 40.7% 50,900 50,000 33,600 71,900 39.6%
Bl99.jBMSY 0.932 0.929 0.755 1.17 21.8% 0.829 0.820 0.650 1.01 23.6%
F199/FMSY 1.03 1.03 0.750 1.32 28.3% 1.18 1.18 0.892 1.53 29.3%

Directly estimated parameters
r 0.514 0.517 0.323 0.785 45.3% 0.528 0.537 0.337 0.865 50.9%
K 108,000 106,000 74,800 159,000 40.7% 102,000 100,000 67,200 144,000 39.6%
q 0.00354 0.00363 0.00236 0.00541 43.3% 0.00384 0.00393 0.00260 0.00612 45.7%

information or assumptions. (For an example, see
Conser et aI., 1992, and Prager, 1993). This would
not be a serious objection if estimates made by mod
els without process error were known to be severely
flawed, but to my knowledge the fisheries literature
includes no comprehensive comparisons of equiva
lent models with and without process error.

The work by Ludwig et al. (1988) does shed some
light on this question, as their simulations and mod
els included both types of error. The authors found
that when observation error was ignored (its vari
ance assumed to be zero) during parameter estima
tion, the resulting estimates were biased and resulted
in an average loss in harvest value of at least 20%.
In contrast, when the relative variance of the pro
cess error component was assumed to be half of its
correct value, a substantially smaller loss in harvest
value resulted. Unfortunately, Ludwig et a1. (1988)
did not present results for estimation under the as
sumption that process error was zero. Further re
search into estimation methods for systems with both
process error and observation error would allow fish
ery scientists and managers to better balance com
plexity and accuracy in population models.

Precision of estimates
Production models tend to estimate some quantities
much more precisely than others. Hilborn and Wal-

ters (1992) discuss this phenomenon at some length;
the comments here reflect my own experiences. For
most stocks, the main biological reference points
(MSY,fMSY) are estimated relatively precisely. How
ever, absolute levels of stock biomass B t and fishing
mortality rate F t are usually estimated much less
precisely. This occurs because very few data sets con
tain sufficient information to estimate q well. (Thp.
example illustrates this point well-Table 2.) By di
viding biomass and fishing-mortality estimates by
estimates of the corresponding biological reference
points, the effects of imprecision in estimating q can
be removed. The relative levels thus obtained are
useful measures in their own right: the relative level
ofbiomass Br / BMSY describes whether a population
is above or below the level at which MSY can be ob
tained, and the relative level offishing mortality rate
Fr / FMSY suggests whether an increase or decrease
in fishing effort might provide a higher sustainable
yield.

When two or more catchability coefficients are es
timated, ratios of catchability coefficients are typi
cally estimated more precisely than the individual
values ofq. Thus it is possible to compare two differ
ent gears without being able to estimate very pre
cisely the catchability of either one. If a parameter
ization involving K and r is used in fitting, the esti
mates of these quantities are usually quite impre-
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Figure 3
Estimated trajectories of relative biomass and relative fishing mortality rate from two production model
analyses (including proposed yields from 1992 through 1996) loosely based on swordfish, Xiphias gladius, in
the North Atlantic Ocean. These analyses are illustrative and are not intended as an assessment of sword
fish. "Relative biomass" is the stock biomass divided by BMSY' the biomass at which maximum sustainable
yield (MSY) can be obtained; "relative fishing mortality rate" is the fishing mortality rate (F) divided by the
rate (FMBY) that yields MSY when the stock is at BMSY' Production models estimate these relative quantities
more precisely than the corresponding absolute quantities. Trajectories (--) are shown with approximate
80% confidence intervals (---) from the bootstrap. Model 2 differs from Modell in being tuned to a hypotheti
cal index of abundance. Panels (A) and (B), estimates from Modell; (C) and (D), estimates from Model 2.

cise, but because they are correlated, the correspond
ing estimates of MSY and optimum effort can none
theless be quite precise.

The estimate ofBl' the starting biomass in the first
year, is usually quite imprecise even when normal
ized to BMSY' It is also my impression that it can be
biased for some data sets, although this does not sig
nificantly affect relative biomass estimates beyond
the first few years. I would therefore not recommend
using a production model to draw any inferences
about the population biomass during the first few
(perhaps 2 to 4) years, unless auxiliary information
is available. Such information might comprise a bio
mass index (for tuning) or knowledge to support us-

ing an assumption of the type B 1 = sK, where s is a
proportionality constant known a priori. Punt, 1990,
provides an example. This indeterminacy in produc
tion modeling is similar to the inability of sequential
population (age-structured) analyses to say much about
population dynamics in the most recent years unless
auxiliary infonnation is used. In practice, it does not
seem to degrade the estimates of MSY and optimum
effort when a reasonably long time series is used.

Validity of bias corrections and
confidence intervals
Bootstrap confidence intervals are approximations,
and bias-correction methods can at times worsen the



approximation. DiCiccio and Tibshirani (1987) dem
onstrate an example in which "the BC and BCa meth
ods seem to pull the percentile interval in the wrong
direction and hence the coverage gets worse." (The
BCa method, due to Efron [1987], incorporates a sec
ond-order correction to the BC method.) In that ex
ample, bias correction for the point estimate would also
have made it worse. The example presented by DiCiccio
and Tibshirani (1987) (estimating the variance ofa cor
relation coefficient, true value 0.9, from a data set of
15 observations) seems ratherextreme, but it does serve
to emphasize that model results, including estimated
bias corrections, must not be accepted blindly.

Confidence intervals estimated by bootstrap meth
ods entail fewer assumptions than those made by
parametric methods, but most likely are still opti
mistic. In a study of an econometrics equation (in
cluding a lagged term) that was fit by generalized
least squares with an estimated covariance matrix,
Freedman and Peters (1984) found the bootstrap es
timates of standard error far superior to those made
with asymptotic assumptions. The bootstrap esti
mates were 20% to 30% too low, but estimates from
asymptotic formulas were too low by factors of al
most three. One reason for underestimation by the
bootstrap was that, due to the effect of fitting, the
residuals used for resampling were smaller than the
true values of the disturbance term (Freedman and
Peters, 1984). A suggested correction is given by
Stine, 1990, p. 338.

There are other reasons why estimated confidence
intervals for fisheries models are likely to be opti
mistic. The time frame encompassed by the data used
to fit fisheries models is usually short and does not
encompass the full range ofenvironmental variation
that can add unexplained variation to observed data.
As the time series becomes longer, the random ef
fects ofenvironmental variation tend to become more
extreme, making earlier confidence intervals appear
overly optimistic (Steele and Henderson, 1984). An
other cause of optimistic confidence intervals is the
use ofpreliminary models (e.g. ANOVA) to construct
abundance indices; such models tend to filter the
indices and thus reduce apparent variance. There
may also be systematic errors in the data (from, e.g.
gradual changes in q or gradual or sudden changes
in the proportion of the catch reported); these can
bias the results, but the confidence intervals include
only the effects of variability, not bias from model
misspecification. Schenker (1985) stated that "boot
strap confidence intervals should be used with cau
tion in complex problems." It is probably appropri
ate to consider estimated confidence intervals from
fisheries population models to be, in general, mini
mum estimates.
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Is there life after death?

The concept ofmaximum sustainable yield was given
its epitaph about 15 years ago in a critical review by
Larkin (1977). Notwithstanding the title of his pa
per, Larkin's main target was not the concept ofMSY
itself, but what he called the "religion" of applying
MSY dogmatically to every stock. Undoubtedly, one
must recognize that MSY is not an immutable quan
tity, and that model results should not be used dog
matically. However, compensation in population dy
namics does give rise to some form ofmaximum sus
tainable yield. Whether MSY is estimable from the
data available for a given stock, and whether it is a
useful concept given the stock's dynamics, are rea
sonable questions that, even ifanswered in the nega
tive, do not invalidate the concept of MSY.

In a response to Larkin's (1977) paper, Barber
(1988) pointed out that MSY, far from being dead,
was still in widespread use. Barber cited the utility
of MSY as a formal management objective; its sim
plicity and ability to be understood by the fishing
industry, administrators, and managers; and the
grounding of the MSY concept in basic ecological
theory. He concluded by repeating Holt's (1981) sug
gestion that MSY be considered part of a multi-fac
eted management scheme.

Shortly following Larkin's (1977) paper, Sissenwine
(1978) discussed several shortcomings ofMSY as the
basis for optimum yield (OY), the "legally mandated
immediate objective ofmarine fisheries management
in the coastal waters of the United States beyond
the territorial sea of the individual states." In this
section, I address those items not discussed earlier.
Sissenwine pointed out that it is difficult to estimate
q, and that q may vary with population size. This
difficulty might be overcome, to some degree, by the
methods described earlier for estimating changes in
q. More importantly, this problem is not unique to
production models. The common use of CPUE series
to tune age-structured models also requires strong
assumptions about q. Indeed, because an age-struc
tured model generally provides little information
about a cohort before it has been substantially fished,
its estimate of population biomass in a year close to
the present may be more influenced by random varia
tions in q than would a similar estimate from a pro
duction model.

Sissenwine (1978) made a number of criticisms of
production models fit by equilibrium assumption. The
methods described here do not use the equilibrium
assumption and are not subject to those problems.
Once the assumption is dropped, one is much less
likely to get a good, but spurious, fit, when modeling
a population whose dynamics are not approximated
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by the model. This is an excellent reason (but not
the only one) to avoid the equilibrium assumption.

A final important point raised by Sissenwine (1978)
is that, because the world is stochastic, one is truly
more interested in maximum average yield (MAY)
than MSY. Several studies (Doubleday, 1976; May et
aI., 1978; Sissenwine, 1978) have shown that in gen
eral MAY < MSY; thus harvesting MSY indefinitely
would lead to stock collapse. This result does not
make production models less useful, but does em
phasize the necessity to use their results in the con
text of other knowledge about the stock and as part
of an evolving view of stock dynamics. Fishery as
sessment and management are dynamic processes
that must adapt to changing conditions and new
knowledge. It is inconceivable that we will ever know
enough about any wild stock to establish a manage
ment regime that could be effective into the indefi
nite future. The failure ofMSY to be such a regime
is no failure at all.

Notes added in proof
1 I have recently been made aware ofseveral pro

duction-model applications that were circulated in
the Collected Papers of the International Commis
sion on Southeast Atlantic Fisheries (ICSEAF). Per
tinent documents include those by Butterworth et
aI., 1986; Andrew et aI., 1989; and Punt, 1989.

2 Anyone attempting to implement the methods
described here should be aware that Equation 6,
when solved for F, can be double-valued.
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